
Package: mobsim (via r-universe)
August 22, 2024

Type Package

Title Spatial Simulation and Scale-Dependent Analysis of Biodiversity
Changes

Version 0.3.1

Date 2024-03-11

Description Simulation, analysis and sampling of spatial biodiversity
data (May, Gerstner, McGlinn, Xiao & Chase 2017)
<doi:10.1111/2041-210x.12986>. In the simulation tools user
define the numbers of species and individuals, the species
abundance distribution and species aggregation. Functions for
analysis include species rarefaction and accumulation curves,
species-area relationships and the distance decay of
similarity.

License GPL (>= 3)

Depends R (>= 4.0.0)

Imports Rcpp, vegan, sads (>= 0.4.1), grDevices, utils, graphics,
stats, methods

LinkingTo Rcpp

Suggests rmarkdown, spatstat.geom, spatstat.random, testthat (>=
3.0.0), mockery, knitr

Config/testthat/edition 3

Config/testthat/parallel true

VignetteBuilder knitr

RoxygenNote 7.3.1

Language en-GB

Encoding UTF-8

URL https://github.com/MoBiodiv/mobsim

BugReports https://github.com/MoBiodiv/mobsim/issues

Repository https://mobiodiv.r-universe.dev

RemoteUrl https://github.com/mobiodiv/mobsim

1

https://doi.org/10.1111/2041-210x.12986
https://github.com/MoBiodiv/mobsim
https://github.com/MoBiodiv/mobsim/issues

2 abund_rect

RemoteRef HEAD

RemoteSha 7c66cdb33312ae2d58ad32f2f4364c74803513b3

Contents
abund_rect . 2
community . 3
community_to_sad . 4
dist_decay . 5
dist_decay_quadrats . 6
divar . 6
div_rand_rect . 8
div_rect . 9
plot.community . 10
plot.dist_decay . 10
plot.divar . 11
plot.sad . 12
plot.spec_sample_curve . 13
rare_curve . 13
rThomas_rcpp . 14
sample_quadrats . 15
sampling_grids . 16
sampling_one_quadrat . 17
sampling_random_bruteforce . 18
sampling_random_overlap . 19
sampling_random_spatstat . 20
sampling_transects . 21
sim_poisson_community . 22
sim_poisson_coords . 23
sim_sad . 24
sim_thomas_community . 26
sim_thomas_coords . 29
spec_sample . 32
spec_sample_curve . 33
summary.community . 34
summary.sad . 34

Index 35

abund_rect —————————————————————————– Get local
species abundance distribution

Description

Get local abundance distribution in rectangle bounded by x0, y0, x0 + xsize, y0 + ysize

community 3

Usage

abund_rect(x0, y0, xsize, ysize, comm)

Arguments

x0 x-coordinate of lower left corner

y0 y-coordinate of lower left corner

xsize Size of the subplot in x-direction

ysize Size of the subplot in y-direction

comm community object

Value

Integer vector with local species abundances

community Create spatial community object

Description

Creates a spatial community object with defined extent and with coordinates and species identities
of all individuals in the community.

Usage

community(x, y, spec_id, xrange = c(0, 1), yrange = c(0, 1))

Arguments

x, y Coordinates of individuals (numeric)

spec_id Species names or IDs; can be integers, characters or factors

xrange Extent of the community in x-direction (numeric vector of length 2)

yrange Extent of the community in y-direction (numeric vector of length 2)

Value

Community object which includes three items:

1. census: data.frame with three columns: x, y, and species names for each individual

2. x_min_max: extent of the community in x-direction

3. y_min_max: extent of the community in y-direction

4 community_to_sad

Examples

x <- runif(100)
y <- runif(100)
species_names <- rep(paste("species",1:10, sep = ""), each = 10)

com1 <- community(x,y, species_names)
plot(com1)
summary(com1)

community_to_sad Get species abundance distribution from community object

Description

Get species abundance distribution from community object

Usage

community_to_sad(comm)

Arguments

comm Community object

Value

Object of class sad, which contains a named integer vector with species abundances

Examples

sim1 <- sim_poisson_community(s_pool = 200, n_sim = 20000, sad_type = "lnorm",
sad_coef = list("cv_abund" = 2))

sad1 <- community_to_sad(sim1)
plot(sad1, method = "rank")
plot(sad1, method = "octave")

dist_decay 5

dist_decay Distance decay of similarity

Description

Estimate pairwise similarities of communities in subplots as function of distance

Usage

dist_decay(
comm,
prop_area = 0.005,
n_samples = 20,
method = "bray",
binary = FALSE

)

Arguments

comm community object

prop_area Subplot size as proportion of the total area

n_samples Number of randomly located subplots

method Choice of (dis)similarity index. See vegdist

binary Perform presence/absence standardization before analysis? See vegdist

Value

Object of class dist_decay: a dataframe with distances between subplot pairs and the respective
similarity indices.

Examples

sim_com1 <- sim_thomas_community(100, 10000, sigma = 0.1, mother_points = 2)
dd1 <- dist_decay(sim_com1, prop_area = 0.005, n_samples = 20)
plot(dd1)

6 divar

dist_decay_quadrats Distance decay of similarity with user-defined quadrats

Description

Estimate pairwise similarities of communities in quadrats as function of distance. The function
allows the user to compute distance decay between the quadrats of his/her choice.

Usage

dist_decay_quadrats(samples, method = "bray", binary = FALSE)

Arguments

samples A list given by sample_quadrats

method Choice of (dis)similarity index. See vegdist

binary Perform presence/absence standardization before analysis? See vegdist

Value

Object of class dist_decay: a dataframe with distances between subplot pairs and the respective
similarity indices.

Examples

sim_com1 <- sim_thomas_community(100, 10000, sigma = 0.1, mother_points = 2)
oldpar<- par(mfrow=c(1,2))
samples <- sample_quadrats(sim_com1, avoid_overlap = TRUE, quadrat_area=.005,

n_quadrats = 50, plot = TRUE)
dd_quadrats <- dist_decay_quadrats(samples)
plot(dd_quadrats)
par(oldpar)

divar Diversity-area relationships

Description

Estimate diversity indices in subplots of different sizes. This includes the well-known species-area
and endemics-area relationships.

divar 7

Usage

divar(
comm,
prop_area = seq(0.1, 1, by = 0.1),
n_samples = 100,
exclude_zeros = TRUE

)

Arguments

comm community object

prop_area Subplot sizes as proportion of the total area (numeric)

n_samples Number of randomly located subplots per subplot size (single integer)

exclude_zeros Should subplots without individuals be excluded? (logical)

Value

Dataframe with the proportional area of the subplots and mean and standard deviation of the fol-
lowing diversity indices:

1. Number of species

2. Number of endemics

3. Shannon index

4. Effective number of species (ENS) based on Shannon index

5. Simpson index

6. Effective number of species (ENS) based on Simpson index

See the documentation of div_rect for detailed information on the definition of the diversity in-
dices.

See Also

div_rand_rect, div_rect

Examples

sim1 <- sim_thomas_community(100, 1000)
divar1 <- divar(sim1, prop_area = seq(0.01, 1.0, length = 20))
plot(divar1)

8 div_rand_rect

div_rand_rect Distribution of local diversity indices

Description

Get mean and standard deviation of diversity indices in several equally sized subplots of a commu-
nity

Usage

div_rand_rect(prop_area = 0.25, comm, n_rect = 100, exclude_zeros = FALSE)

Arguments

prop_area Size of subplots as proportion of the total area

comm community object

n_rect Number of randomly located subplots

exclude_zeros Should subplots without individuals be excluded? (logical)

Value

Vector with mean and standard deviation of the following diversity indices:

1. Number of species

2. Number of endemics

3. Shannon index

4. Effective number of species (ENS) based on Shannon index

5. Simpson index

6. Effective number of species (ENS) based on Simpson index

See the documentation of div_rect for detailed information on the definition of the diversity in-
dices.

Examples

sim1 <- sim_poisson_community(100,1000)
div_rand_rect(prop_area = 0.1, comm = sim1)

div_rect 9

div_rect Get local diversity indices

Description

Get diversity indices including species richness, no. of endemics, Shannon and Simpson diversity
for one rectangle subplot in the community.

Usage

div_rect(x0, y0, xsize, ysize, comm)

Arguments

x0 x-coordinate of lower left corner
y0 y-coordinate of lower left corner
xsize Size of the subplot in x-direction
ysize Size of the subplot in y-direction
comm community object

Details

The effective number of species is defined as the number of equally abundant species that produce
the same value of a certain diversity index as an observed community (Jost 2006). According to
Chao et al. 2014 and Chiu et al. 20 ENS_shannon can be interpreted as the number of common
species and ENS_simpson as the number of dominant species in a community.

Value

Named vector with six diversity indices

1. n_species: Number of species
2. n_endemics: Number of endemics
3. shannon: Shannon index index defined as H = −

∑
pi ∗ log(pi), where pi is the relative

abundance of species i:
4. ens_shannon: Effective number of species (ENS) based on the Shannon index exp(H)
5. simpson: Simpson index index (= probability of interspecific encounter PIE) defined as D =

1−
∑

p2i
6. ens_simpson: Effective number of species (ENS) based on the Simpson index 1/D

References

Jost 2006. Entropy and diversity. Oikos, 113, 363-375.

Chao et al. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and
estimation in species diversity studies. Ecological Monographs, 84, 45-67.

Hsieh et al. 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill
numbers). Methods Ecol Evol, 7, 1451-1456.

10 plot.dist_decay

Examples

sim1 <- sim_poisson_community(100,1000)
div_rect(0, 0, 0.3, 0.3, sim1)

plot.community Plot spatial community object

Description

Plot positions and species identities of all individuals in a community object.

Usage

S3 method for class 'community'
plot(x, ..., col = NULL, pch = NULL)

Arguments

x Community object

... Other parameters to graphics::plot

col Colour vector to mark species identities

pch Plotting character to mark species identities. pch 16 is advised for large datasets

Value

This function is called for its side effects and has no return value.

Examples

sim1 <- sim_thomas_community(30, 500)
plot(sim1)

plot.dist_decay Plot distance decay of similarity

Description

Plot distance decay of similarity

Usage

S3 method for class 'dist_decay'
plot(x, ...)

plot.divar 11

Arguments

x Dataframe generated by dist_decay

... Additional graphical parameters used in praphics::plot.

Details

The function plots the similarity indices between all pairs of subplots as function of distance. To
indicate the relationship a stats::loess smoother is added to the plot.

Value

This function is called for its side effects and has no return value.

Examples

sim_com1 <- sim_thomas_community(100, 10000)
dd1 <- dist_decay(sim_com1)
plot(dd1)

plot.divar —————————————————————————– Plot
diversity-area relationships

Description

—————————————————————————– Plot diversity-area relationships

Usage

S3 method for class 'divar'
plot(x, ...)

Arguments

x Dataframe generated by the function divar.

... Additional graphical parameters used in graphics::plot.

Value

This function is called for its side effects and has no return value.

12 plot.sad

plot.sad Plot species abundance distributions

Description

Plot species abundance distributions

Usage

S3 method for class 'sad'
plot(x, ..., method = c("octave", "rank"))

Arguments

x Vector with species abundances (integer vector)

... Additional graphical parameters used in graphics::plot or barplot

method Plotting method, partial match to "octave" or "rank"

Details

With method = "octave" a histogram showing the number species in several abundance classes
is generated. The abundance class are a simplified version of the "octaves" suggested by Preston
(1948), which are based on log2-binning. The first abundance class includes species with 1 individ-
ual, the second with 2, the third with 3-4, the fourth with 5-8, etc.

With method = "rank" rank-abundance curve is generated with species abundance rank on the x-
axis (descending) and species abundance on the y-axis (Hubbell 2001).

Value

This function is called for its side effects and has no return value.

References

Preston 1948. The Commonness, and rarity, of species. Ecology 29(3):254-283.

Hubbell 2001. The unified neutral theory of biodiversity and biogeography. Princeton University
Press.

Examples

abund1 <- sim_sad(s_pool = 100, n_sim = 10000, sad_type = "lnorm",
sad_coef = list("cv_abund" = 1))

plot(abund1, method = "octave")
plot(abund1, method = "rank")

plot.spec_sample_curve 13

plot.spec_sample_curve

Plot species sampling curves

Description

Plot species sampling curves

Usage

S3 method for class 'spec_sample_curve'
plot(x, ...)

Arguments

x Species sampling curve generated by spec_sample_curve

... Additional graphical parameters used in graphics::plot.

Value

This function is called for its side effects and has no return value.

Examples

sim_com1 <- sim_thomas_community(s_pool = 100, n_sim = 1000)
sac1 <- spec_sample_curve(sim_com1, method = c("rare","acc"))
plot(sac1)

rare_curve Species rarefaction curve

Description

Expected species richness as a function of sample size

Usage

rare_curve(abund_vec)

Arguments

abund_vec Species abundance distribution of the community (integer vector)

14 rThomas_rcpp

Details

This function essentially evaluates spec_sample for sample sizes from 1 to sum(abund_vec). It is
similar to the function vegan:rarecurve in the R package vegan.

Value

Numeric Vector with expected species richness in samples of 1, 2, 3 ... n individuals

References

Gotelli & Colwell 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and
comparison of species richness. Ecology Letters 4, 379–391.

Examples

sad1 <- sim_sad(100, 2000, sad_type = "lnorm", sad_coef = list("meanlog" = 2,
"sdlog" = 1))

rc1 <- rare_curve(sad1)
plot(rc1, type = "l", xlab = "Sample size", ylab = "Expected species richness")

rThomas_rcpp Thomas process individual distribution simulation for one species

Description

Usually used internally inside sim_thomas_coords This function randomly draws points (individu-
als) around one or several mother points using Rcpp. The function is an efficient re-implementation
of the rThomas function from the spatstat package.

Arguments

n_points The total number of points (individuals).
n_mother_points

Number of mother points (= cluster centres).

xmother Vector of n_mother_points x coordinates for the mother points.

ymother Vector of n_mother_points y coordinates for the mother points.

sigma Mean displacement (along each coordinate axes) of a point from its mother point
(= cluster centre).

xmin Left limit, default=0.

xmax Right limit, default=1.

ymin Bottom limit, default=0.

ymax Top limit, default=1.

sample_quadrats 15

Value

A dataframe with x and y coordinates.

Author(s)

Felix May, Alban Sagouis

sample_quadrats Plot-based samples from a spatially-explicit census

Description

This function allows to sample quadratic subplots from a spatially-explicit community. The output
format are a sites x species abundance table and a sites x xy-coordinates table. The sites x species
abundance is a classical data format used in community ecology. The table generated can be for
instance be further analysed with the package vegan.

Usage

sample_quadrats(
comm,
n_quadrats = 20,
quadrat_area = 0.01,
plot = TRUE,
method = "random",
avoid_overlap = TRUE,
x0 = 0,
y0 = 0,
delta_x = 0.1,
delta_y = 0.1,
seed = NULL

)

Arguments

comm Community object from which the samples are generated

n_quadrats (integer) Number of sampling quadrats

quadrat_area (numeric) Area of the sampling quadrats

plot (logical) Should the sampling design be plotted? default to TRUE.

method (character) Available methods are "random", "transect", "grid"

avoid_overlap (logical) For the random sampling try to generate a design without overlap of
quadrats . Default is TRUE.

x0, y0 (numeric value) Lower left corner of the first quadrat in transect and grid sam-
pling

16 sampling_grids

delta_x (numeric value) Distance between consecutive quadrats in transect and grid sam-
pling in x-direction (the distance between the left sides is measured)

delta_y (numeric value) Distance between consecutive quadrats in transect and grid sam-
pling in y-direction (the distance between the lower sides is measured)

seed (integer) Any integer passed to set.seed for reproducibility.

Value

A list with two items, spec_dat and xy_dat. spec_dat is a data.frame with sampling quadrats
in rows and species abundances in columns, and xy_dat is a data.frame with sampling quadrats in
rows and the xy-coordinates of the quadrats (lower left corner) in columns.

Examples

library(vegan)
sim_com1 <- sim_poisson_community(100, 10000)
comm_mat1 <- sample_quadrats(sim_com1, n_quadrats = 100,
quadrat_area = 0.002, method = "grid")
specnumber(comm_mat1$spec_dat)
diversity(comm_mat1$spec_dat, index = "shannon")

sampling_grids Creates square quadrats aligned on a regular grid

Description

Creates square quadrats aligned on a regular grid

Usage

sampling_grids(
n_quadrats,
xmin,
xmax,
ymin,
ymax,
x0,
y0,
delta_x,
delta_y,
quadrat_size

)

sampling_one_quadrat 17

Arguments

n_quadrats (integer) Number of sampling quadrats

xmin (numeric) minimum possible value on the x axis a quadrat can cover.

xmax (numeric) maximum possible value on the x axis a quadrat can cover.

ymin (numeric) minimum possible value on the y axis a quadrat can cover.

ymax (numeric) maximum possible value on the y axis a quadrat can cover.

x0, y0 (numeric value) Lower left corner of the first quadrat in transect and grid sam-
pling

delta_x (numeric value) Distance between consecutive quadrats in transect and grid sam-
pling in x-direction (the distance between the left sides is measured)

delta_y (numeric value) Distance between consecutive quadrats in transect and grid sam-
pling in y-direction (the distance between the lower sides is measured)

quadrat_size (numeric) width of the quadrats.

Value

a data.frame with 2 columns x and y giving the coordinates of the lower left corner of the square
quadrats.

sampling_one_quadrat Creates one square quadrat randomly located in the landscape

Description

Creates one square quadrat randomly located in the landscape

Usage

sampling_one_quadrat(xmin, xmax, ymin, ymax, seed = NULL)

Arguments

xmin (numeric) minimum possible value on the x axis a quadrat can cover.

xmax (numeric) maximum possible value on the x axis a quadrat can cover.

ymin (numeric) minimum possible value on the y axis a quadrat can cover.

ymax (numeric) maximum possible value on the y axis a quadrat can cover.

seed (integer) Any integer passed to set.seed for reproducibility.

Value

a data.frame with 2 columns x and y giving the coordinates of the lower left corner of the square
quadrat.

18 sampling_random_bruteforce

sampling_random_bruteforce

Creates coordinates (lower left corner of a quadrat) randomly dis-
tributed but without overlapping each other

Description

This function works without having the spatstat.random package install.

Usage

sampling_random_bruteforce(
n_quadrats,
min_dist,
xmin,
xmax,
ymin,
ymax,
seed = NULL

)

Arguments

n_quadrats Number of sampling quadrats

min_dist (numeric) minimal distance between two points to avoid overlap. Equal to the
length of a quadrat diagonal

xmin (numeric) minimum possible value on the x axis a quadrat can cover.

xmax (numeric) maximum possible value on the x axis a quadrat can cover.

ymin (numeric) minimum possible value on the y axis a quadrat can cover.

ymax (numeric) maximum possible value on the y axis a quadrat can cover.

seed (integer) Any integer passed to set.seed for reproducibility.

Value

a data.frame with 2 columns x and y giving the coordinates of the lower left corner of the square
quadrats.

sampling_random_overlap 19

sampling_random_overlap

Creates coordinates (lower left corner of a quadrat) randomly dis-
tributed that may overlap each other

Description

Creates coordinates (lower left corner of a quadrat) randomly distributed that may overlap each
other

Usage

sampling_random_overlap(
n_quadrats,
min_dist,
xmin,
xmax,
ymin,
ymax,
seed = NULL

)

Arguments

n_quadrats Number of sampling quadrats

min_dist (numeric) minimal distance between two points to avoid overlap. Equal to the
length of a quadrat diagonal

xmin (numeric) minimum possible value on the x axis a quadrat can cover.

xmax (numeric) maximum possible value on the x axis a quadrat can cover.

ymin (numeric) minimum possible value on the y axis a quadrat can cover.

ymax (numeric) maximum possible value on the y axis a quadrat can cover.

seed (integer) Any integer passed to set.seed for reproducibility.

Value

a data.frame with 2 columns x and y giving the coordinates of the lower left corner of the square
quadrats.

20 sampling_random_spatstat

sampling_random_spatstat

Creates coordinates (lower left corner of a quadrat) randomly dis-
tributed but without overlapping each other

Description

Efficient algorithm from package spatstat.random is used. Produces similar results as sampling_random_bruteforce.

Usage

sampling_random_spatstat(
n_quadrats,
min_dist,
xmin,
xmax,
ymin,
ymax,
seed = NULL

)

Arguments

n_quadrats Number of sampling quadrats

min_dist (numeric) minimal distance between two points to avoid overlap. Equal to the
length of a quadrat diagonal

xmin (numeric) minimum possible value on the x axis a quadrat can cover.

xmax (numeric) maximum possible value on the x axis a quadrat can cover.

ymin (numeric) minimum possible value on the y axis a quadrat can cover.

ymax (numeric) maximum possible value on the y axis a quadrat can cover.

seed (integer) Any integer passed to set.seed for reproducibility.

Value

a data.frame with 2 columns x and y giving the coordinates of the lower left corner of the square
quadrats.

sampling_transects 21

sampling_transects Creates square quadrats aligned along a transect

Description

Creates square quadrats aligned along a transect

Usage

sampling_transects(
n_quadrats,
xmin,
xmax,
ymin,
ymax,
x0,
y0,
delta_x,
delta_y,
quadrat_size

)

Arguments

n_quadrats (integer) Number of sampling quadrats

xmin (numeric) minimum possible value on the x axis a quadrat can cover.

xmax (numeric) maximum possible value on the x axis a quadrat can cover.

ymin (numeric) minimum possible value on the y axis a quadrat can cover.

ymax (numeric) maximum possible value on the y axis a quadrat can cover.

x0, y0 (numeric value) Lower left corner of the first quadrat in transect and grid sam-
pling

delta_x (numeric value) Distance between consecutive quadrats in transect and grid sam-
pling in x-direction (the distance between the left sides is measured)

delta_y (numeric value) Distance between consecutive quadrats in transect and grid sam-
pling in y-direction (the distance between the lower sides is measured)

quadrat_size (numeric) width of the quadrats.

Value

a data.frame with 2 columns x and y giving the coordinates of the lower left corner of the square
quadrats.

22 sim_poisson_community

sim_poisson_community Simulate community with random spatial positions.

Description

This function simulates a community with a certain abundance distribution and and random spatial
coordinates. This function consecutively calls sim_sad and sim_poisson_coords

Usage

sim_poisson_community(
s_pool,
n_sim,
sad_type = "lnorm",
sad_coef = list(cv_abund = 1),
fix_s_sim = FALSE,
xrange = c(0, 1),
yrange = c(0, 1),
seed = NULL

)

Arguments

s_pool Number of species in the pool (integer)

n_sim Number of individuals in the simulated community (integer)

sad_type Root name of the species abundance distribution model of the species pool (char-
acter) - e.g., "lnorm" for the lognormal distribution (rlnorm); "geom" for the
geometric distribution (rgeom), or "ls" for Fisher’s log-series distribution (rls).
See the table in Details below, or rsad for all SAD model options.

sad_coef List with named arguments to be passed to the distribution function defined by
the argument sad_type. An overview of parameter names is given in the table
below.
In mobsim the log-normal and the Poisson log-normal distributions can alterna-
tively be parameterized by the coefficient of variation (cv) of the relative abun-
dances in the species pool. Accordingly, cv_abund is the standard deviation of
abundances divided by the mean abundance (no. of individuals / no. of species).
cv_abund is thus negatively correlated with the evenness of the species abun-
dance distribution.
Please note that the parameters mu and sigma are not equal to the mean and
standard deviation of the log-normal distribution.

fix_s_sim Should the simulation constrain the number of species in the simulated local
community? (logical)

xrange Extent of the community in x-direction (numeric vector of length 2)

yrange Extent of the community in y-direction (numeric vector of length 2)

seed Integer. Any integer passed to set.seed for reproducibility.

sim_poisson_coords 23

Value

A community object as defined by community.

Author(s)

Felix May

Examples

com1 <- sim_poisson_community(s_pool = 20, n_sim = 500, sad_type = "lnorm",
sad_coef = list("meanlog" = 2, "sdlog" = 1))
plot(com1)

sim_poisson_coords Simulate random spatial coordinates

Description

Add random spatial positions to a species abundance distribution.

Usage

sim_poisson_coords(abund_vec, xrange = c(0, 1), yrange = c(0, 1), seed = NULL)

Arguments

abund_vec Species abundance vector (integer)

xrange Extent of the community in x-direction (numeric vector of length 2)

yrange Extent of the community in y-direction (numeric vector of length 2)

seed Integer. Any integer passed to set.seed for reproducibility.

Value

A community object as defined by community.

Author(s)

Felix May

Examples

abund <- sim_sad(s_pool = 100, n_sim = 1000)
sim_com1 <- sim_poisson_coords(abund)
plot(sim_com1)
summary(sim_com1)

24 sim_sad

sim_sad Simulate species abundance distributions

Description

Simulate species abundance distribution (SAD) of a local community with user-defined number of
species and relative abundance distribution in the pool, and user-defined number of individuals in
the simulated local community.

Usage

sim_sad(
s_pool = NULL,
n_sim = NULL,
sad_type = c("lnorm", "bs", "gamma", "geom", "ls", "mzsm", "nbinom", "pareto",

"poilog", "power", "powbend", "weibull"),
sad_coef = list(cv_abund = 1),
fix_s_sim = FALSE,
drop_zeros = TRUE,
seed = NULL

)

Arguments

s_pool Number of species in the pool (integer)
n_sim Number of individuals in the simulated community (integer)
sad_type Root name of the species abundance distribution model of the species pool (char-

acter) - e.g., "lnorm" for the lognormal distribution (rlnorm); "geom" for the
geometric distribution (rgeom), or "ls" for Fisher’s log-series distribution (rls).
See the table in Details below, or rsad for all SAD model options.

sad_coef List with named arguments to be passed to the distribution function defined by
the argument sad_type. An overview of parameter names is given in the table
below.
In mobsim the log-normal and the Poisson log-normal distributions can alterna-
tively be parameterized by the coefficient of variation (cv) of the relative abun-
dances in the species pool. Accordingly, cv_abund is the standard deviation of
abundances divided by the mean abundance (no. of individuals / no. of species).
cv_abund is thus negatively correlated with the evenness of the species abun-
dance distribution.
Please note that the parameters mu and sigma are not equal to the mean and
standard deviation of the log-normal distribution.

fix_s_sim Should the simulation constrain the number of species in the simulated local
community? (logical)

drop_zeros Should the function remove species with abundance zero from the output? (log-
ical)

seed Integer. Any integer passed to set.seed for reproducibility.

sim_sad 25

Details

The function sim_sad was built using code of the function sads::rsad from the R package sads.
However, in contrast to sads::rsad, the function sim_sad allows to define the number of individu-
als in the simulated local community. This is implemented by converting the abundance distribution
simulated based on sads::rsad into a relative abundance distribution. This relative abundance dis-
tribution is considered as the species pool for the local community. In a second step the required no.
of individuals (n_sim) is sampled (with replacement) from this relative abundance distribution.

Please note that this might effect the interpretation of the parameters of the underlying statistical
distribution, e.g. the mean abundance will always be n_sim/s_pool irrespective of the settings of
sad_coef.

When fix_s_sim = FALSE the species number in the local community might deviate from s_pool
due to stochastic sampling. When fix_s_sim = TRUE the local number of species will equal s_pool,
but this constraint can result in systematic biases from the theoretical distribution parameters. Gen-
erally, with fix_s_sim = TRUE additional very rare species will be added to the community, while
the abundance of the most common ones is reduced to keep the defined number of individuals.

Here is an overview of all available models (sad_type) and their respective coefficients (sad_coef).
Further information is provided by the documentation of the specific functions that can be accesses
by the links. Please note that the coefficient cv_abund for the log-normal and Poisson log-normal
model are only available within mobsim.

SAD function Distribution name coef #1 coef #2 coef #3
sads::rbs Mac-Arthur’s brokenstick N S
stats:rgamma Gamma distribution shape rate scale
rgeom Geometric distribution prob
rlnorm Log-normal distributions meanlog sdlog cv_abund
rls Fisher’s log-series distribution N alpha
sads::rmzsm Metacommunity zero-sum multinomial J theta
stats::rnbinom Negative binomial distribution size prob mu
sads::rpareto Pareto distribution shape scale
sads::rpoilog Poisson-lognormal distribution mu sigma cv_abund
sads::rpower Power discrete distributions s
sads::rpowbend Puyeo’s Power-bend discrete distribution s omega
stats::rweibull Weibull distribution shape scale

Value

Object of class sad, which contains a named integer vector with species abundances

Author(s)

Felix May

Examples

#Simulate log-normal species abundance distribution
sad_lnorm1 <- sim_sad(s_pool = 100, n_sim = 10000, sad_type = "lnorm",

sad_coef = list("meanlog" = 5, "sdlog" = 0.5))

26 sim_thomas_community

plot(sad_lnorm1, method = "octave")
plot(sad_lnorm1, method = "rank")

Alternative parameterization of the log-normal distribution
sad_lnorm2 <- sim_sad(s_pool = 100, n_sim = 10000, sad_type = "lnorm",

sad_coef = list("cv_abund" = 0.5))
plot(sad_lnorm2, method = "octave")

Fix species richness in the simulation by adding rare species
sad_lnorm3a <- sim_sad(s_pool = 500, n_sim = 10000, sad_type = "lnorm",

sad_coef = list("cv_abund" = 5), fix_s_sim = TRUE)
sad_lnorm3b <- sim_sad(s_pool = 500, n_sim = 10000, sad_type = "lnorm",

sad_coef = list("cv_abund" = 5))

plot(sad_lnorm3a, method = "rank")
points(1:length(sad_lnorm3b), sad_lnorm3b, type = "b", col = 2)
legend("topright", c("fix_s_sim = TRUE","fix_s_sim = FALSE"),

col = 1:2, pch = 1)

Different important SAD models

Fisher's log-series
sad_logseries <- sim_sad(s_pool = NULL, n_sim = NULL, sad_type = "ls",

sad_coef = list("N" = 1e5, "alpha" = 20))

Poisson log-normal
sad_poilog <- sim_sad(s_pool = 100, n_sim = 10000, sad_type = "poilog",

sad_coef = list("mu" = 5, "sig" = 0.5))

Mac-Arthur's broken stick
sad_broken_stick <- sim_sad(s_pool = NULL, n_sim = NULL, sad_type = "bs",

sad_coef = list("N" = 1e5, "S" = 100))

Plot all SADs together as rank-abundance curves
plot(sad_logseries, method = "rank")
lines(1:length(sad_lnorm2), sad_lnorm2, type = "b", col = 2)
lines(1:length(sad_poilog), sad_poilog, type = "b", col = 3)
lines(1:length(sad_broken_stick), sad_broken_stick, type = "b", col = 4)
legend("topright", c("Log-series","Log-normal","Poisson log-normal","Broken stick"),

col = 1:4, pch = 1)

sim_thomas_community Simulate community with clumped spatial positions.

Description

This function simulates a community with a certain abundance distribution and with intraspecific
aggregation, i.e. individuals of the same species are distributed in clusters.

sim_thomas_community 27

Usage

sim_thomas_community(
s_pool,
n_sim,
sad_type = "lnorm",
sad_coef = list(cv_abund = 1),
fix_s_sim = FALSE,
sigma = 0.02,
cluster_points = NA,
mother_points = NA,
xmother = NA,
ymother = NA,
xrange = c(0, 1),
yrange = c(0, 1),
seed = NULL

)

Arguments

s_pool Number of species in the pool (integer)

n_sim Number of individuals in the simulated community (integer)

sad_type Root name of the species abundance distribution model of the species pool (char-
acter) - e.g., "lnorm" for the lognormal distribution (rlnorm); "geom" for the
geometric distribution (rgeom), or "ls" for Fisher’s log-series distribution (rls).
See the table in Details below, or rsad for all SAD model options.

sad_coef List with named arguments to be passed to the distribution function defined by
the argument sad_type. An overview of parameter names is given in the table
below.
In mobsim the log-normal and the Poisson log-normal distributions can alterna-
tively be parameterized by the coefficient of variation (cv) of the relative abun-
dances in the species pool. Accordingly, cv_abund is the standard deviation of
abundances divided by the mean abundance (no. of individuals / no. of species).
cv_abund is thus negatively correlated with the evenness of the species abun-
dance distribution.
Please note that the parameters mu and sigma are not equal to the mean and
standard deviation of the log-normal distribution.

fix_s_sim Should the simulation constrain the number of species in the simulated local
community? (logical)

sigma Mean displacement (along each coordinate axes) of a point from its mother point
(= cluster centre). Sigma correlates with cluster extent. When length(sigma)
== length(abund_vec), each species receives a specific cluster extent. Other-
wise, the first value of sigma is recycled and all species share the same cluster
extent. When sigma of any species is more than twice as large as the largest plot
dimension, a random Poisson distribution is simulated, which is more efficient
than a Thomas cluster process. The parameter sigma corresponds to the scale
parameter of the function rThomas in the package spatstat.random.

https://CRAN.R-project.org/package=spatstat.random

28 sim_thomas_community

cluster_points Mean number of points per cluster. If this is a single value, species have the
same average number of points per cluster. If this is a vector of the same
length as abund_vec, each species has a specific mean number of points per
cluster. If no value is provided, the number of points per cluster is deter-
mined from the abundance and from mother_points. If mother_points and
cluster_points are given OR xmother and ymother, and cluster points are
given, cluster_points is overridden. If mother_points=0, there will be no
clustering even if cluster_points=400 (high clustering) because cluster_points
is overridden. The parameter cluster_points corresponds to the mu parameter
of spatstat.random::rThomas.

mother_points Number of mother points (= cluster centres). If this is a single value, all species
have the same number of clusters. For example mother_points = 1 can be used
to simulate only one cluster per species, which then represents the complete
species range. If mother_points is a vector of the same length as abund_vec,
each species has a specific number of clusters. If mother_points equals 0 there
is no clustering and the distribution is homogeneous. If no value is provided, the
number of clusters is determined from the abundance and the number of points
per cluster (cluster_points).

xmother List of length equal to the number of species. Each list element is a vector of x
coordinates for every mother points. If one element is NA, the the corresponding
species is not clustered.

ymother List of length equal to the number of species. Each list element is a vector of y
coordinates for every mother points. If one element is NA, the the corresponding
species is not clustered.

xrange Extent of the community in x-direction. If this a numeric vector of length 2,
all species share the same range. To specify different x ranges for all species,
xrange should be a data.frame with 2 columns, min and max.

yrange Extent of the community in y-direction. If this a numeric vector of length 2,
all species share the same range. To specify different y ranges for all species,
xrange should be a data.frame with 2 columns, min and max.

seed Integer. Any integer passed to set.seed for reproducibility.

Details

This function consecutively calls sim_sad and sim_thomas_coords

See the documentations of sim_sad and sim_thomas_coords for details.

Value

A community object as defined by community

Author(s)

Felix May

sim_thomas_coords 29

Examples

com1 <- sim_thomas_community(s_pool = 20, n_sim = 500, sad_type = "lnorm",
sad_coef = list("meanlog" = 2, "sdlog" = 1),
sigma = 0.01)

plot(com1)

sim_thomas_coords Simulate clumped spatial coordinates

Description

Add clumped (aggregated) positions to a species abundance distribution. Clumping is simulated
using a Thomas cluster process, also known as Poisson cluster process (Morlon et al. 2008, Wiegand
& Moloney 2014)

Usage

sim_thomas_coords(
abund_vec,
sigma = 0.02,
mother_points = NA,
xmother = NA,
ymother = NA,
cluster_points = NA,
xrange = c(0, 1),
yrange = c(0, 1),
seed = NULL

)

Arguments

abund_vec Species abundance vector (integer)

sigma Mean displacement (along each coordinate axes) of a point from its mother point
(= cluster centre). Sigma correlates with cluster extent. When length(sigma)
== length(abund_vec), each species receives a specific cluster extent. Other-
wise, the first value of sigma is recycled and all species share the same cluster
extent. When sigma of any species is more than twice as large as the largest plot
dimension, a random Poisson distribution is simulated, which is more efficient
than a Thomas cluster process. The parameter sigma corresponds to the scale
parameter of the function rThomas in the package spatstat.random.

mother_points Number of mother points (= cluster centres). If this is a single value, all species
have the same number of clusters. For example mother_points = 1 can be used
to simulate only one cluster per species, which then represents the complete
species range. If mother_points is a vector of the same length as abund_vec,
each species has a specific number of clusters. If mother_points equals 0 there

https://CRAN.R-project.org/package=spatstat.random

30 sim_thomas_coords

is no clustering and the distribution is homogeneous. If no value is provided, the
number of clusters is determined from the abundance and the number of points
per cluster (cluster_points).

xmother List of length equal to the number of species. Each list element is a vector of x
coordinates for every mother points. If one element is NA, the the corresponding
species is not clustered.

ymother List of length equal to the number of species. Each list element is a vector of y
coordinates for every mother points. If one element is NA, the the corresponding
species is not clustered.

cluster_points Mean number of points per cluster. If this is a single value, species have the
same average number of points per cluster. If this is a vector of the same
length as abund_vec, each species has a specific mean number of points per
cluster. If no value is provided, the number of points per cluster is deter-
mined from the abundance and from mother_points. If mother_points and
cluster_points are given OR xmother and ymother, and cluster points are
given, cluster_points is overridden. If mother_points=0, there will be no
clustering even if cluster_points=400 (high clustering) because cluster_points
is overridden. The parameter cluster_points corresponds to the mu parameter
of spatstat.random::rThomas.

xrange Extent of the community in x-direction. If this a numeric vector of length 2,
all species share the same range. To specify different x ranges for all species,
xrange should be a data.frame with 2 columns, min and max.

yrange Extent of the community in y-direction. If this a numeric vector of length 2,
all species share the same range. To specify different y ranges for all species,
xrange should be a data.frame with 2 columns, min and max.

seed Integer. Any integer passed to set.seed for reproducibility.

Details

To generate a Thomas cluster process of a single species this function uses a C++ re-implementation
of the function rThomas in the package spatstat.random.

There is an inherent link between the parameters abund_vec, mother_points, and cluster_points.
For every species the abundance has to be equal to the number of clusters (mother_points) times
the number of points per cluster (cluster_points).

abundance = motherpoints ∗ clusterpoints

Accordingly, if one of the parameters is provided, the other one is directly calculated from the abun-
dance. Values for mother_points override values for cluster_points. If none of the parameters
is specified, it is assumed that for every species there is a similar number of clusters and of points
per cluster.

motherpoints = clusterpoints =
√
(abundance),

In this case rare species have few clusters with few points per cluster, while abundant species have
many clusters with many points per cluster.

https://CRAN.R-project.org/package=spatstat.random

sim_thomas_coords 31

Value

A community object as defined by community.

Author(s)

Felix May, Alban Sagouis

References

Morlon et al. 2008. A general framework for the distance-decay of similarity in ecological commu-
nities. Ecology Letters 11, 904-917.

Wiegand and Moloney 2014. Handbook of Spatial Point-Pattern Analysis in Ecology. CRC Press

See Also

rThomas

Examples

abund <- c(10,20,50,100)
sim1 <- sim_thomas_coords(abund, sigma = 0.02)
plot(sim1)

Simulate species "ranges"
sim2 <- sim_thomas_coords(abund, sigma = 0.02, mother_points = 1)
plot(sim2)

Equal numbers of points per cluster
sim3 <- sim_thomas_coords(abund, sigma = 0.02, cluster_points = 5)
plot(sim3)

With large sigma the distribution will be essentially random (see Details)
sim4 <- sim_thomas_coords(abund, sigma = 10)
plot(sim4)

Some random and some clustered species with different numbers of mother points.
mother_points <- sample(0:3, length(abund), replace = TRUE)
sim5 <- sim_thomas_coords(abund, mother_points = mother_points, sigma=0.01)
plot(sim5)

Specifying mother point coordinates or no-clustering (\code{NA}).
mother_points <- sample(1:3, length(abund), replace = TRUE)
xmother <- lapply(1:length(abund), function(i) runif(mother_points[i], 0, 1))
ymother <- lapply(1:length(abund), function(i) runif(mother_points[i], 0, 1))
xmother[[1]] <- NA
ymother[[1]] <- NA
sim6 <- sim_thomas_coords(abund, xmother=xmother, ymother=ymother, sigma=0.01)
plot(sim6)

Species having different ranges.
xrange <- data.frame(t(sapply(1:length(abund), function(i) sort(runif(2, 0, 1)))))

32 spec_sample

yrange <- data.frame(t(sapply(1:length(abund), function(i) sort(runif(2, 0, 1)))))
sim7 <- sim_thomas_coords(abund, mother_points=1, sigma=1, xrange=xrange, yrange=yrange)
plot(sim7)

spec_sample Sample species richness

Description

Expected species richness in a random sample of fixed size.

Usage

spec_sample(abund_vec, n)

Arguments

abund_vec Species abundance distribution of the community (integer vector)

n Sample size in terms of number of individuals (integer)

Details

The expected number of species is calculated after Hurlbert 1971, Equation 3.

spec_sample is similar to the function rarefy in the R package vegan.

Value

Expected number of species in a sample of n individuals

References

Hurlbert, S.H. 1971. The nonconcept of species diversity: a critique and + alternative parameters.
Ecology 52, 577-586.

Examples

sad1 <- sim_sad(100, 1000)
spec_sample(abund_vec = sad1, n = 20)

spec_sample_curve 33

spec_sample_curve Non-spatial and spatially-explicit species sampling curves

Description

Expected species richness as function of sample size (no. of individuals), when individuals are
sampled randomly (rarefaction) or when nearest-neighbours are samples (accumulation).

Usage

spec_sample_curve(comm, method = c("accumulation", "rarefaction"))

Arguments

comm Community object

method Partial match to accumulation or rarefaction. Also both methods can be
included at the same time.

Details

Non-spatial sampling corresponds to the species rarefaction curve, which only depends on the
species abundance distribution and can thus be also calculated from abundance data (see rare_curve).

In contrast the species-accumulation curve starts from a focal individual and only samples the near-
est neighbours of the focal individual. The final species accumulation curves is calculated as the
mean over the accumulation curves starting from all individuals.

In contrast to the rarefaction curve the accumulation curve is not only influenced by the species
abundance distribution, but also by the spatial distribution of individuals.

Value

A dataframe with 2-3 columns. The first column indicates the sample size (numbers of individu-
als), and the second and third column indicate the expected species richness for spatial sampling
(column: "spec_accum") and/or random sampling (column "spec_rarefied")

Examples

sim_com1 <- sim_thomas_community(s_pool = 100, n_sim = 1000)
sac1 <- spec_sample_curve(sim_com1, method = c("rare","acc"))

head(sac1)
plot(sac1)

34 summary.sad

summary.community Print summary of spatial community object

Description

Print summary of spatial community object

Usage

S3 method for class 'community'
summary(object, digits = 2, ...)

Arguments

object Community object of class community

digits Integer. Number of digits to print

... Additional arguments passed to print.

Value

This function is called for its side effects and has no return value.

summary.sad Print summary of species abundance distribution object

Description

Print summary of species abundance distribution object

Usage

S3 method for class 'sad'
summary(object, ...)

Arguments

object Community object of class sad

... Additional arguments passed to print.

Value

This function is called for its side effects and has no return value.

See Also

sim_sad

Index

abund_rect, 2

barplot, 12

community, 3, 3, 5, 7–9, 23, 28, 31, 34
community_to_sad, 4

dist_decay, 5, 11
dist_decay_quadrats, 6
div_rand_rect, 7, 8
div_rect, 7, 8, 9
divar, 6, 11

graphics::plot, 10–13

plot.community, 10
plot.dist_decay, 10
plot.divar, 11
plot.sad, 12
plot.spec_sample_curve, 13
praphics::plot, 11
print, 34

rare_curve, 13, 33
rarefy, 32
rgeom, 22, 24, 25, 27
rlnorm, 22, 24, 25, 27
rls, 22, 24, 25, 27
rsad, 22, 24, 27
rThomas, 27, 29, 31
rThomas_rcpp, 14

sads, 25
sads::rbs, 25
sads::rmzsm, 25
sads::rpareto, 25
sads::rpoilog, 25
sads::rpowbend, 25
sads::rpower, 25
sads::rsad, 25
sample_quadrats, 6, 15

sampling_grids, 16
sampling_one_quadrat, 17
sampling_random_bruteforce, 18, 20
sampling_random_overlap, 19
sampling_random_spatstat, 20
sampling_transects, 21
sim_poisson_community, 22
sim_poisson_coords, 22, 23
sim_sad, 22, 24, 28, 34
sim_thomas_community, 26
sim_thomas_coords, 14, 28, 29
spec_sample, 14, 32
spec_sample_curve, 13, 33
stats::loess, 11
stats::rnbinom, 25
stats::rweibull, 25
stats:rgamma, 25
summary.community, 34
summary.sad, 34

vegan, 14, 15, 32
vegan:rarecurve, 14
vegdist, 5, 6

35

	abund_rect
	community
	community_to_sad
	dist_decay
	dist_decay_quadrats
	divar
	div_rand_rect
	div_rect
	plot.community
	plot.dist_decay
	plot.divar
	plot.sad
	plot.spec_sample_curve
	rare_curve
	rThomas_rcpp
	sample_quadrats
	sampling_grids
	sampling_one_quadrat
	sampling_random_bruteforce
	sampling_random_overlap
	sampling_random_spatstat
	sampling_transects
	sim_poisson_community
	sim_poisson_coords
	sim_sad
	sim_thomas_community
	sim_thomas_coords
	spec_sample
	spec_sample_curve
	summary.community
	summary.sad
	Index

